
Conference ”Embedded graphs”, St.Peterburg, 27-31 OCTOBER
2014.

INTRINSIC METRIC AND
STANDARDNESS FOR THE INFINITE

GRADED GRAPHS

A.VERSHIK (PETERSBURG DEPTH. OF MATHEMATICAL
INSTITUTE OF RUSSIAN ACADEMY OF SCIENCES,
St.PETERSBURG UNIVERSITY, INSTITUTE OF THE

PROBLEMS OF TRANSMISSION OF
INFORMATION(MOSCOW))

October 26, 2014



CONTENT

1.Graded graphs (Bratteli diagrams). Examples of graded graphs.
Family of cotransition probabilities as ”Towers of measures”.
2.Space of paths, invariant (central) measures, main problem.
3.Projective (inverse) limit of simplecies and its structure.
4.Transfer of metric for by-partive graphs as Kantorovich metric.
Iteration of transfer and intrinsic metric.
5.Uniform compactness and standardness of graph and projective
limit.
6.Main theorem.
7.Examples: Pascal graph: d = 1, 2, . . . , general hexagonal metric,
root metric; Young graph.
8.Problems.



CONTENT

1.Graded graphs (Bratteli diagrams). Examples of graded graphs.
Family of cotransition probabilities as ”Towers of measures”.

2.Space of paths, invariant (central) measures, main problem.
3.Projective (inverse) limit of simplecies and its structure.
4.Transfer of metric for by-partive graphs as Kantorovich metric.
Iteration of transfer and intrinsic metric.
5.Uniform compactness and standardness of graph and projective
limit.
6.Main theorem.
7.Examples: Pascal graph: d = 1, 2, . . . , general hexagonal metric,
root metric; Young graph.
8.Problems.



CONTENT

1.Graded graphs (Bratteli diagrams). Examples of graded graphs.
Family of cotransition probabilities as ”Towers of measures”.
2.Space of paths, invariant (central) measures, main problem.
3.Projective (inverse) limit of simplecies and its structure.

4.Transfer of metric for by-partive graphs as Kantorovich metric.
Iteration of transfer and intrinsic metric.
5.Uniform compactness and standardness of graph and projective
limit.
6.Main theorem.
7.Examples: Pascal graph: d = 1, 2, . . . , general hexagonal metric,
root metric; Young graph.
8.Problems.



CONTENT

1.Graded graphs (Bratteli diagrams). Examples of graded graphs.
Family of cotransition probabilities as ”Towers of measures”.
2.Space of paths, invariant (central) measures, main problem.
3.Projective (inverse) limit of simplecies and its structure.
4.Transfer of metric for by-partive graphs as Kantorovich metric.
Iteration of transfer and intrinsic metric.
5.Uniform compactness and standardness of graph and projective
limit.

6.Main theorem.
7.Examples: Pascal graph: d = 1, 2, . . . , general hexagonal metric,
root metric; Young graph.
8.Problems.



CONTENT

1.Graded graphs (Bratteli diagrams). Examples of graded graphs.
Family of cotransition probabilities as ”Towers of measures”.
2.Space of paths, invariant (central) measures, main problem.
3.Projective (inverse) limit of simplecies and its structure.
4.Transfer of metric for by-partive graphs as Kantorovich metric.
Iteration of transfer and intrinsic metric.
5.Uniform compactness and standardness of graph and projective
limit.
6.Main theorem.

7.Examples: Pascal graph: d = 1, 2, . . . , general hexagonal metric,
root metric; Young graph.
8.Problems.



CONTENT

1.Graded graphs (Bratteli diagrams). Examples of graded graphs.
Family of cotransition probabilities as ”Towers of measures”.
2.Space of paths, invariant (central) measures, main problem.
3.Projective (inverse) limit of simplecies and its structure.
4.Transfer of metric for by-partive graphs as Kantorovich metric.
Iteration of transfer and intrinsic metric.
5.Uniform compactness and standardness of graph and projective
limit.
6.Main theorem.
7.Examples: Pascal graph: d = 1, 2, . . . , general hexagonal metric,
root metric; Young graph.

8.Problems.



CONTENT

1.Graded graphs (Bratteli diagrams). Examples of graded graphs.
Family of cotransition probabilities as ”Towers of measures”.
2.Space of paths, invariant (central) measures, main problem.
3.Projective (inverse) limit of simplecies and its structure.
4.Transfer of metric for by-partive graphs as Kantorovich metric.
Iteration of transfer and intrinsic metric.
5.Uniform compactness and standardness of graph and projective
limit.
6.Main theorem.
7.Examples: Pascal graph: d = 1, 2, . . . , general hexagonal metric,
root metric; Young graph.
8.Problems.



Graded graphs

Let Γ =
⊔

n∈N Γn is a N-graded graph with finite levels Γn, and
edges between the vertices of the adjacent levels. See examples on
the next slides. Γ0 = {1}

Set of vertices of the graph or level of the graph denote as
V (Γ),V (Γn). Denote T (Γ) the set of all infinite paths started at
Γ0. This is a compact in weak topology.
EXAMPLES:
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New structure: family of cotransition probabilities

Suppose that for each vertex v ∈ Γn, n = 1, . . . there is a
probabilities λvu, u l v of the edges,

∑
u λ

v
u = 1 (cotransition

probability). Let Λ = {λvu; u, v ∈ V (Γ)}.
This is a new structure on the graph and we can consider it as
follow:
Each vertex of the level n + 1 is a measure on the set of vertices of
level n, or point of the simplex Σn ( which is the set of all formal
convex combinations of the vertices of level n).
Now the graph can be called as a ”Tower of Measures”.
The notion of so called ”Universal Tower of Measures” (1969)
(Graph with continuous set of vertices).
Example: graph of NUP.

Definition
A probability measure µ on the space of paths T (Γ) called
Λ-invariant if the conditional probability of the measure on the
subspace of T (Γ) of pathes which contain edge (u, v), is equal to
λvu.
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Example of Λ-structure and central measures

Let v is a vertex of Γ; denote the number of paths from {∅} till v
as dimv
Define Λ-structure as follow: for all
n, u,w ∈ Γn, v ∈ Γn+1; u l v ,w l v

λvu : λvw = dimu : dimw

.
(Shortly:λvu is proportional to number dimv)
The Λ-invariant measures for this structure called central measure
on the paths T (Γ).
There is a canonical bijection between central measures and set of
traces on the algebra C (Γ) corresponded to the graph Γ. Algebra
C (Γ) is locally semi-simple algebra for which graph Γ is graph of
simple modules of it. If C (Γ) is group algebra of locally finite
group, then central measures are characters of the group. Ergodic
central measures correspond to indecomposable traces or
characters.
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Main Problem

PROBLEM. To describe the list of all central measures on the
space T (Γ).
More general: To describe the list of all Λ-invariant measure for
given family of cotransition probability Λ
About the problem. Characters of infinite symmetric group;
Dynkin exit-boundary;
random walk on graphs and groups etc.
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Inverse (projective) limit of simplecies

Why simplecies?
Consider for each level n-th of the graph the simplex Σn of all
formal convex combinations of the vertexes of the level of graph Γn.
This is the set of all probability measures on Γn. If we identify the
vertex v ∈ Γn with uniform measure on the set of paths from ∅ to
v , then simplex Σn could be considered as set of all central
measures on Tn(Γ) = set of all (finite) pathes till the level n.
So inverse or projective limit of the simplices used to be the set of
all central measures on the space T (Γ) of paths of the graph Γ.
The Problem above reduces to the
Problem: To describe the projective limit of the simplecies.
The same question can be put for general set of the cotransition
probabilities Λ.
Our main result is to divide the set of graded graphs on to two
classes depending on the type of answer on the problem: -standard
when the problem has visible answer and nonstandard.
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About simplex

Let Σ is a simplex of the dimension n. For x ∈ Σ denote
µ1x , µ

2
x . . . µ

n+1
x its the barycenter coordinates of the point x and

µx — the corresponding measure on ex(Σ) -set of vertices of Σ, so
the barycenter of measure µ is x : bar(µx) = x .
We will use the bijection x 99K µx between points of Σ and
probability measures on ex(Σ).



About simplex

Let Σ is a simplex of the dimension n. For x ∈ Σ denote
µ1x , µ

2
x . . . µ

n+1
x its the barycenter coordinates of the point x and

µx — the corresponding measure on ex(Σ) -set of vertices of Σ, so
the barycenter of measure µ is x : bar(µx) = x .

We will use the bijection x 99K µx between points of Σ and
probability measures on ex(Σ).



About simplex

Let Σ is a simplex of the dimension n. For x ∈ Σ denote
µ1x , µ

2
x . . . µ

n+1
x its the barycenter coordinates of the point x and

µx — the corresponding measure on ex(Σ) -set of vertices of Σ, so
the barycenter of measure µ is x : bar(µx) = x .
We will use the bijection x 99K µx between points of Σ and
probability measures on ex(Σ).



Projective (Inverse) Limit of the simplices



Projective (Inverse) Limit of the simplices



Easy facts about projective limit

lim
←

(Σn, pn,m) = Σ∞, pn,m : Σn → Σm, 1 ≤ m ≤ n ≤ ∞.

The point of Σ∞ is a sequence

{xn} : xn ∈ Σn, p(n,m)xn = xm.

1. Projective limit of the affine simplices is the compact simplex
(in weak or projective topology).
2.Criteria of the extremality {xn} ∈ Σ∞:

Theorem
Then point {xn} is extremal point of Σ∞ iff

∀m w − lim
n

p∗n,m(µxn) = δxm .
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n

p∗n,m(µxn) = δxm .
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Kantorovich metric: extension of metric on 0-skeleton of
the finite dimensional simplex to the whole simplex

Suppose we have a metric ρ on the set of vertices ex(Σ) of the
finite-dimension simplex Σ.
How to extend it to the whole simplex?
Let X ,Y ∈ Σ, ex(Σ) = {e1, . . . ek} and r is metric on ex(Σ); then

ρ(X ,Y )
.

= kr (µX , µY ),

where kr (., .) is Kantorovich (transport) metric on the measures on
(ex(Σ), r).
Formula:

ρ(X ,Y ) ≡ kr (νX , νY ) = min
ψ

∑
i ,j

Ψi ,j r(ei , ej) :

Ψ = {ψi ,j ≥ 0};
∑
j

Ψi ,j = µX (i),
∑
i

Ψi ,j = µY (j).
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EXAMPLE

Let r(i , j) = 1, i 6= j is the metric on the vertices {ei}i = 1, . . . n of
standard simplex Σn ⊂ Rn+1. Then the extension of the metric r is
the metric ρ on the affine space An = {x ∈ Rn+1 :

∑
i xi = 1}

invariant under translations (”root metric”); the norm
‖x‖ = ρ(a, a + x) is hexagonal norm, or restriction of l1 norm in
Rn+1 on Rn = {x ∈ Rn+1 :

∑
i xi = 0} (Cartan subalgebra for An.)

In the general case the unit ball for (K − R)-norm generating by
Kantorovich extension of metric r is the convex hall Br on the
AffineΣ of all ”roots”, e.g. vectors:

ei ,j =
δi − δj
r(i , j)

, i , j = 1 . . . n, i 6= j .

(lemma P-V)
Now we want to transfer metric from the level Γn to the level Γn+1

and from the simplex to the next one. Because of λ structure each
vertex of on Γn+1 is the measure on Γn, consequently, point of Σn.
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Transfer of metric in bi-partive graphs
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Intrinsic metric

Suppose we have projective limit of the simplices {Σn, pn}∞n=1:

Σ1 ≡ [0, 1]← Σ2 ← . . .Σn ← Σn+1 . . . ,

and initial metric ρ1 on the Σ1,
then we can sequentially define a sequence of the metrics ρn on
the simplices Σn, n > 1: we consider metric ρn on
pn(exΣn+1) ⊂ Σn, thus we have a metric on the vertices of Σn+1

and then ρn+1 is extension of it on whole simplex Σn+1.

Definition
The sequence

{Σn, pn,m, ρn}

defines the projective limit Σ∞ which is equipped with intrinsic
metrics.

Important Remark. There is no serious dependence of the
properties of intrinsic metric on initial metric ρ1.
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Standardness

Definition
Graded graph Γ =

⋃
Γn (and the corresponded projective limit of

simplecies limn Σ(Γn) ≡ Σ∞(Γ)) called standard if the set of all
simplecies Σn, n = 1 . . .∞ are uniformly compact, this means:

∀ε > 0, sup
n
{Nε(Σn, ρn)} <∞,

here Nε(K , r) is number of points in the ε-net of compact K with
respect to the metric r .

Theorem
If the projective limit is standard then the intrinsic metrics ρn
define intrinsic metric on the limit simplex Σinfty , and the last is
compact so weak topology agrees with extended intrinsic metric.
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Corollaries

Theorem
If the projective limit is standard then the Chouqet boundary (set
of extremal points) of the simplex Σ∞) is closed (and compact)
with respect to extended intrinsic metric.

Consequently, the list of all ergodic central measures (or
Λ-invariant measures) on the space of paths of graded Graph Γ is
the limit of the levels Γn in intrinsic metric.

Conclusion. The usual difficulties in the problem of these type is
the following: the list of the invariant (central) measures is
”known” and the goal is to prove that indeed this is the list.
Usually this is difficult question because procedure of the finding of
the measures like ”ergodic method” is too complicate. Our
method looks like ”apriority estimation”: if we prove the
standardness then the visual list is complete.
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Examples

1. Consider Pascal graph of an finite dimension (Pascal graph of
dimension 2 is classical one and it is Z2

+. The multidimensional
Pascal graph is Zd

+.

Theorem
These graphs are standard. The limit simplex (simplex of central
measures) is simplex of probability measures on the simplex on
dimension d − 1 (generalized De Finetti theorem). The intrinsic
metric (norm) is hexagonal metric (see above). icmetric

2.Young graph (Thoma’s theorem).
3.Nonstandard graphs. Poulsen simplex. .
Calculations of diameter.
4.Limit shape theorems.
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Problems

1.Consider the graph of non-ordered pairs (NUP)
Ergodic measures (extremal points of the projective limit).
The Orbits of the group of automorphism of the dyadic tree.
2.Young graph and other: how to prove the standardness.
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